
Non-semisimple Lie algebras with Levi factor o (3), (2, ) and their invariants

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 1357

(http://iopscience.iop.org/0305-4470/36/5/312)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 1357–1369 PII: S0305-4470(03)52858-X

Non-semisimple Lie algebras with Levi factor so(3),
sl(2, R) and their invariants

Rutwig Campoamor-Stursberg
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Abstract
We analyse the number N of functionally independent generalized Casimir
invariants for non-semisimple Lie algebras s

−→⊕ Rr with Levi factors isomorphic
to so(3) and sl(2, R) in dependence of the pair (R, r) formed by a representation
R of s and a solvable Lie algebra r. We show that for any dimension n � 6,
there exist Lie algebras s

−→⊕Rr with non-trivial Levi decomposition such that
N (s

−→⊕Rr) = 0.

PACS number: 02.20.Sv

1. Introduction

The important role played by invariant theory in physics was recognized long ago. Electroweak
interactions and quantum numbers in the study of particle states are based on the concept of
symmetry, and their invariants provide fundamental information. Among the various types
of symmetry, dynamical ones constitute one of the more important cases, as shown by Gell-
Mann and Ne’eman in their hadron classification [1]. The analysis of the group SU(3)

resulted in the prediction of new particles whose mass could be derived from the invariants of
the group. The invariants of Lie algebras have also shown their effectiveness in the description
of Hamiltonians [2], the labelling of irreducible representations or the study of coadjoint orbits
[3, 4]. Other important applications of invariants arise in their combination with the theories
of Lie algebra contractions, deformations and rigidity [5–8]. For example, all kinematical
algebras are related by a contraction procedure, which has allowed a further analysis of these
algebras [7, 9, 10]. The interest of invariants of rigid Lie algebras is fully justified by the fact
that semisimple Lie algebras are rigid. The invariants of semisimple Lie algebras constitute
a classical problem, and it is the only case which has been solved in a satisfactory manner.
The invariants of solvable Lie algebras are only studied for specific classes, as they do not
underlie a structure theory such as the classical algebras. What refers to the Lie algebras with
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non-trivial Levi decomposition, invariants are known for physically important algebras, such
as the special affine algebras sa(n, R), the kinematical Lie algebras and their subalgebras.

A formula for the number N (g) of functionally independent invariants of the coadjoint
representation of a Lie algebra g was given by Beltrametti and Blasi [11] and Pauri and Prosperi
[12] in the mid-1960s. This fact reduces the computation of this number to the determination
of the rank of a skew-symmetric matrix A(g) whose entries correspond to the Lie brackets
of g. With some effort, this formula can be used to show that the number of invariants of
semisimple Lie algebras coincides with its rank [13]. Moreover, it proves that for direct sums
g1 ⊕ g2 of Lie algebras, the number N (g1 ⊕ g2) is N (g1) + N (g2). One can ask whether for
semi-direct sums g = s

−→⊕Rr, s being the Levi factor of g, R a representation of s and r the
maximal solvable ideal (called radical) of g, some formula exists which allows one to express
N (s

−→⊕Rr) in terms of N (s), N (r) and some quantity related to the representation R. The
motivation of this problem lies in the study of the special affine algebras sa(n, R), which are
a semidirect sum of the simple Lie algebra sl(n, R) and an n-dimensional Abelian Lie algebra
[14]. These algebras are known to have only one invariant (which turns out to be a Casimir
operator), which shows that the representation plays a crucial role in the semidirect product,
and that in principle the existence of a formula expressing the number of invariants in terms of
the factors does not exist. The main reason for its nonexistence lies in the distinct possibilities
of choice for radicals r for a fixed representation of s. The question that arises naturally in
this context is if there exist Lie algebras s

−→⊕Rr with non-trivial Levi decomposition (i.e. s �= 0
and [s, r] �= 0) such that N (s

−→⊕Rr) = 0.
In this work, we show that such algebras exist for any dimension n � 6. Moreover,

by considering the simple algebras so(3) and sl(2, R), we analyse the number N (s
−→⊕ Rr) for

various kinds of representations R and solvable Lie algebras r.
Any Lie algebra g considered in this work is defined over the field R of real numbers.

We convene that nonwritten brackets are either zero or obtained by antisymmetry. We also
use the Einstein summation convention. Abelian Lie algebras of dimension n will be denoted
by nL1.

2. Invariants of Lie algebras: the Beltrametti–Blasi formula

The method to determine the invariants of a Lie algebra in terms of systems of partial differential
equations (PDEs) has become standard in the physical literature [15, 16], and it is the one we
will use here. Let {X1, . . . , Xn} be a basis of g and

{
Ck

ij

}
be the structure constants over this

basis. We consider the representation of g in the space C∞(g∗) given by

X̂i = −Ck
ijxk∂xj

(1)

where [Xi,Xj ] = Ck
ijXk (1 � i < j � n, 1 � k � n). This representation is isomorphic to

ad(g), and therefore satisfies the brackets [X̂i , X̂j ] = Ck
ij X̂k . The invariants F(X1, . . . , Xn)

of g

[Xi, F (X1, . . . , Xn)] = 0 (2)

are found by solving the system of linear first-order partial differential equations

X̂iF (x1, . . . , xn) = −Ck
ij xk∂xj

F (x1, . . . , xn) = 0 1 � i � n (3)

and then replacing the variables xi by the corresponding generator Xi (possibly after
symmetrizing). In recent years, new algorithms to solve system (3) have been developed,
which simplify the calculation in some cases [16]. A maximal set of functionally independent
solutions of (3) will be called a fundamental set of invariants. Polynomial solutions of
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system (3) are therefore polynomials in the generators which commute with g, thus correspond
to the well-known Casimir operators [15]. The system does not impose additional conditions
which imply that the solutions are polynomials, so that a non-polynomial solution will be
called, in some analogy with the classical case, a generalized Casimir invariant or simply
an invariant of g. If F reduces to a constant we say that the invariant is trivial. In the
case of semisimple Lie algebras, the solutions found are in fact Casimir operators, and
the number of functionally independent invariants is given by the dimension of its Cartan
subalgebra. However, for non-semisimple Lie algebras, there is no reason to suppose that
only the polynomial invariants are of physical interest. A classical example for a Hamiltonian
being a nonlinear function of the Casimir operators was described by Pauli in [17].

Another important task is to find the maximal number N (g) of functionally independent
solutions of (3). For the case of the classical groups this number depends only on the dimension
of a Cartan subalgebra, while for solvable Lie algebras no such general formula exists [5].
However, for a fixed algebra, this number can be described in terms of the dimension and a
certain matrix associated with the commutator table. More specifically, we denote by A(g)

the matrix representing the commutator table of g over a given basis, i.e.,

A(g) = (
Ck

ij xk

)
. (4)

Such a matrix has necessarily even rank. Then N (g) is given by

N (g) = dim g − sup x1,...,xn

{
rank

(
Ck

ijxk

)}
. (5)

This formula was first described by Beltrametti and Blasi [11] and Pauri and Prosperi [12].
The number of polynomial solutions is generally lower than N (g), up to certain special classes
of Lie algebras (such as semisimple and nilpotent) [15].

Invariants of Lie algebras have been determined for some classes of non-semisimple
Lie algebras, such as solvable Lie algebras in low dimensions [18, 19], the kinematical Lie
algebras [7] or the special affine Lie algebras [16].

We give an example to illustrate the general method of obtaining the invariants. Let
s = so(3) and consider the representation R = ad so(3). Let us suppose that the radical of the
six-dimensional Lie algebra s

−→⊕Rr is the three-dimensional Abelian algebra 3L1. The algebra
s
−→⊕Rr is of interest for multidimensional extensions of the Bianchi type-IX cosmology [20],

and the corresponding vacuum Einstein field equations have been solved in [20]. Indeed,
this is the simplest embedding of a Bianchi type-IX algebra in an algebra with non-trivial
Levi decomposition [21]. It can easily be verified that s

−→⊕Rr satisfies N (s
−→⊕Rr) = 2. The

invariants are solution of the system

X̂1F = (−x3∂x2 + x2∂x3 − x6∂x5 + x5∂x6

)
F = 0

X̂2F = (
x3∂x1 − x1∂x3 + x6∂x4 − x4∂x6

)
F = 0

X̂3F = (−x2∂x1 + x1∂x2 − x5∂x4 + x4∂x5

)
F = 0

X̂4F = (−x6∂x2 + x5∂x3

)
F = 0

X̂5F = (
x6∂x1 − x4∂x3

)
F = 0

X̂6F = (−x5∂x1 + x4∂x2

)
F = 0


. (6)

Since the equations {X̂iF = 0}i=4,5,6 do not depend on ∂xi
F for i = 4, 5, 6, we can extract

the following system from (6):

X̂′
1F = (−x6∂x5 + x5∂x6

)
F = 0

X̂′
2F = (

x6∂x4 − x4∂x6

)
F = 0

X̂′
3F = (−x5∂x4 + x4∂x5

)
F = 0

 (7)
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which has the solution I1 = x2
4 + x2

5 + x2
6 . Now, as the rank of the coefficient matrix

corresponding to this subsystem is two, the other solution of (6) will depend also on x1, x2, x3.
This invariant can be chosen as I2 = x1x4 +x2x5 +x3x6. The important fact about this example
is the solution found extracted from the subsystem (7). In the following section, we will see
that this is not casual, but a property that holds in general.

3. Semidirect sums of Lie algebras

The classification of Lie algebras is simplified in some manner by the Levi decomposition
theorem, which states that any Lie algebra is essentially formed from a semisimple Lie algebra
s called the Levi factor of g and a maximal solvable ideal r, called the radical [22]. Since the
latter is an ideal, the Levi factor s acts on r, and there are two possibilities for this action:

[s, r] = 0 [s, r] �= 0.

If the first holds, then g is a direct sum s ⊕ r, whereas the second possibility implies the
existence of a representation R of s which describes the action, i.e.,

[x, y] = R(x)y ∀x ∈ s y ∈ r. (8)

Unless there is no ambiguity, it is more convenient to write −→⊕ R instead of −→⊕ , which is the
common symbol for denoting semidirect products. Since (8) implies that the radical is a
module over s, we have to expect severe restrictions on the structure of the radical, while for
direct sums any solvable Lie algebra is suitable as radical [23].

Proposition 1. Let s be a semisimple Lie algebra and R an irreducible representation. If
s
−→⊕Rr is the Levi decomposition of a Lie algebra, then r is an Abelian algebra.

The proof is immediate, since the Jacobi condition implies that the ideals r(0) := r, r(i) :=
[r(i−1), r(i−1)] for i � 1 are invariant by the action of s. If R is irreducible, then either r(1) = 0
or r(1) = r, and since r is solvable, r(1) �= r. Reasoning similarly, we can easily deduce that
the radical r is mapped into its maximal nilpotent ideal n (usually called the nilradical of r),
from which the following property follows.

Proposition 2. Let s
−→⊕ Rr be a Levi decomposition. If the representation R does not possess

a copy of the trivial representation, then the radical r is a nilpotent Lie algebra.

This result is in some manner surprising, since it implies the existence of a copy of the
trivial representation whenever the radical is not nilpotent. Of course, it does not imply that
a nilpotent Lie algebra cannot be the radical when the representation contains copies of the
trivial representation.

The Lie algebras having non-trivial Levi decomposition have been completely classified
up to dimension nine [23]. For dimension ten, some partial results do also exist, mainly Levi
factors isomorphic to rank one simple Lie algebras. Since the algebra so(3) is a compact form
of sl(2, C), the number of (real) representations of so(3) is lower than that for sl(2, R) [24],
which implies the existence of much more Lie algebras having the latter as Levi factor.

Lemma 1. Let g = s ⊕ r . Then N (g) = N (s) + N (r).

This is an obvious consequence of the Beltrametti–Blasi formula. Since the sum is
direct, we have that [s, r] = 0 and therefore the rank of the matrix A(g) is the sum of
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the ranks of A(s) and A(r). Now one can ask what happens whenever we have a non-
trivial Levi decomposition. Here no apparent relation between the number of invariants
of the Levi factor and the radical, and the number of invariants of the semidirect sum
seems to exist. If we consider the simple algebra sl(2, R) = {X1,X2,X3 | [X1,X2] =
2X2, [X1,X3] = −2X3, [X2,X3] = X1} and the representation R = D 1

2
⊕ D0,D 1

2
being

the irreducible representation of highest weight λ = 1, there are two choices of r such
that sl(2, R)

−→⊕ r is a six-dimensional Lie algebra with non-trivial Levi decomposition: either
the three-dimensional Heisenberg Lie algebra h1 = {X4,X5,X6 | [X4,X5] = X6} or the
algebra A3,3 = {X4,X5,X6 | [Xi,X6] = Xi, i = 4, 5} (see [19] for this notation). It
is a straightforward verification that N (h1) = N (A3,3) = 1, thus the formula, if existing,
should give the same value for both cases. Now the Lie algebra sl(2, R)

−→⊕Rh1 admits
two (polynomial) invariants I1 = x6 and I2 = 2x1x4x5 + 4x2x3x6 + 2x2x

2
5 − 2x3x

2
4 + x2

1x6,
while the algebra sl(2, R)

−→⊕A3,3 has no invariant. The conclusion is that the number
of invariants will, in general, not be expressible in terms of its factors. This example
points out another interesting fact: the existence of pairs (R, r) formed by representations
R of a semisimple Lie algebra s and a solvable Lie algebra r with structure of s-module
such that

N (r) > 0 and N (s
−→⊕ Rr) = 0. (9)

This also shows that it is not sufficient to determine the invariants of solvable Lie algebras to
have an overview of invariants of Lie algebras, implicitly assumed in some early works. Thus
the Levi decomposition theorem does not simplify the determination of Casimir operators of
Lie algebras, up to the case where we obtain a direct sum. The next step is naturally to try
the classification of pairs (R, r) for fixed Levi factor s such that (9) holds. This problem
cannot be solved in a satisfactory manner since the classification of solvable Lie algebras
is, in practice, not possible for dimensions n � 7 (the classification of six-dimensional real
Lie algebras contains some errors and some omissions). Although an algorithm to obtain
all solvable Lie algebras has been proposed in [25], the formidable computations involved in
higher dimensions make this classification extremely difficult to be effectively implemented.
We must therefore restrict ourselves to certain special cases that are of interest, either for
mathematical or physical reasons.

Table 1 shows the complete list of Lie algebras in dimension �8 with non-trivial Levi
decomposition and having no invariants. All of them are indecomposable, up to the seventh
algebra, which is a direct sum of the six-dimensional algebra and the two-dimensional
affine Lie algebra r2. Due to the low dimensions, the only Levi factors that appear are
the simple Lie algebras so(3) and sl(2, R). These algebras are of own interest, since they
play an important role in multidimensional cosmologies [26]. The algebras of table 1 have
been calculated explicitly imposing the condition that the rank of the matrix A(g) equals
the dimension of g, although they can also be deduced from the classifications presented
in [23, 27]. The advantage of the direct determination used to construct table 1 is that
it allows a precise insight into the effect of the representation R of the Levi part on the
radical r, as well as the structure of the elements of r which do not belong to its derived
subalgebra [r, r].

We convene that the term DJ denotes the real representation of sl(2, R) in its standard
form, while R4 denotes the four-dimensional real irreducible representation of so(3) and D0

denotes the trivial representation in both cases.
Although the general classification of these algebras does not seem to be realizable, since

it is based on the possibility of classifying the solvable Lie algebras, once an example is known
we can deduce the following generic result.
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Table 1. Lie algebras with non-trivial Levi factor and N = 0.

Levi factor s Dim Representation Nonzero structure constants

sl(2, R) 6 D 1
2

⊕ D0 C2
12 = 2, C3

13 = −2, C1
23 = 1, C4

14 = 1, C5
15 = −1,

C4
25 = 1, C5

34 = 1, C4
46 = 1, C5

56 = 1

so(3) 8 R4 ⊕ D0 C3
12 = 1, C2

13 = −1, C1
23 = 1, C7

14 = 1
2 , C6

15 = 1
2 ,

C5
16 = − 1

2 , C4
17 = − 1

2 , C5
24 = 1

2 , C4
25 = − 1

2 , C7
26 = 1

2 ,
C6

27 = − 1
2 , C6

34 = 1
2 , C7

35 = − 1
2 , C4

36 = − 1
2 , C5

37 = 1
2 ,

C4
48 = 1, C5

58 = 1, C6
68 = 1, C7

78 = 1

so(3) 8 R4 ⊕ D0 C3
12 = 1, C2

13 = −1, C1
23 = 1, C7

14 = 1
2 , C6

15 = 1
2 ,

C5
16 = − 1

2 , C4
17 = − 1

2 , C5
24 = 1

2 , C4
25 = − 1

2 , C7
26 = 1

2 ,

C6
27 = − 1

2 , C6
34 = 1

2 , C7
35 = − 1

2 , C4
36 = − 1

2 , C5
37 = 1

2 ,
C4

48 = p,C6
48 = −1, C5

58 = p,C7
58 = −1, C4

68 = 1,
C6

68 = p,C5
78 = 1, C7

78 = p

sl(2,R) 8 2D 1
2

⊕ D0 C2
12 = 2, C3

13 = −2, C1
23 = 1, C4

14 = 1, C5
15 = −1,

C6
16 = 1, C7

17 = −,C4
25 = 1, C6

27 = 1, C5
34 = 1,

C7
36 = 1, C4

48 = 1, C5
58 = 1, C4

68 = 1, C6
68 = 1,

C5
78 = 1, C7

78 = 1

sl(2,R) 8 2D 1
2

⊕ D0 C2
12 = 2, C3

13 = −2, C1
23 = 1, C4

14 = 1, C5
15 = −1,

C6
16 = 1, C7

17 = −,C4
25 = 1, C6

27 = 1, C5
34 = 1,

C7
36 = 1, C4

48 = 1, C5
58 = 1, C6

68 = p,C7
78 = p (p �= −1)

sl(2,R) 8 2D 1
2

⊕ D0 C2
12 = 2, C3

13 = −2, C1
23 = 1, C4

14 = 1, C5
15 = −1,

C6
16 = 1, C7

17 = −1, C4
25 = 1, C6

27 = 1, C5
34 = 1,

C7
36 = 1, C4

48 = p,C6
48 = −1, C5

58 = p,C7
58 = −1,

C4
68 = 1, C6

68 = p,C5
78 = 1, C7

78 = p (p �= 0)

sl(2,R) 8 D 1
2

⊕ 3D0 C2
12 = 2, C3

13 = −2, C1
23 = 1, C4

14 = 1, C5
15 = −1,

C4
25 = 1, C5

34 = 1, C4
46 = 1, C5

56 = 1, C8
78 = 1

sl(2,R) 8 D 3
2

⊕ D0 C2
12 = 2, C3

13 = −2, C1
23 = 1, C4

14 = 3, C5
15 = 1,

C6
16 = −1, C7

17 = −3, C4
25 = 3, C5

26 = 2, C6
27 = 1,

C5
34 = 1, C6

35 = 2, C7
36 = 3, C4

48 = 1, C5
58 = 1,

C6
68 = 1, C7

78 = 1

Theorem 1. Let s be a semisimple Lie algebra and (R, r) be a pair formed by a representation
of s and a solvable Lie algebra r such that N (s

−→⊕Rr) = 0. Then, for any k � 1, there exists a
Lie algebra gk with Levi factor s and dimension n = dim(s

−→⊕Rr)+2k such thatN (g) = 0.

Proof. Consider the Lie algebra g = s
−→⊕R′r′, where R′ = R ⊕ 2kD0 and the radical is

r′ = r⊕ kr2, where r2 is the affine Lie algebra generated by Y,Z and brackets [Y,Z] = Z.

The algebra r′ is obviously a s-module, and since N (s
−→⊕Rr) = 0 and N (r2) = 0, the assertion

follows from lemma 1. �

Corollary 1. For any dimension n � 6 there exist Lie algebras g with non-trivial Levi
decomposition such that N (g) = 0.

This reduces the classification to the pairs (R, r) formed by a representation of s (this
being fixed) and radicals r which are indecomposable, i.e., that do not decompose into a direct
sum of ideals. Even for low dimensions like ten, it is far from being easy to find such pairs.
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As an example, consider the representation R = R4 ⊕ 3D0 of so(3) and the radical r defined
by the brackets

[Xi,X8] = Xi 4 � i � 7
[X4,X9] = X6 [X5,X9] = X7 [X6,X9] = −X4

[X7,X9] = −X5 [X9,X10] = X10

over the basis {X4, . . . , X10}. This is the simplest non-decomposable solvable Lie algebra
such that the semidirect sum so(3)

−→⊕Rr has no non-trivial invariants (for the considered
representation). In fact more is true, namely the nonexistence of solvable Lie algebras r such
that the action of the generators X ∈ r − [r, r] over the nilradical [r, r] is diagonal. This will
happen also for other representations different from the one taken here.

4. Levi factors s = so(3), sl(2, R)

Theorem 1 is a general result which holds for any Lie algebra satisfying (9), and therefore not
dependent on the particular Levi factor taken. Now an inspection of table 1 points out some
interesting facts for the considered Levi factors s = so(3) and sl(2, R). In this section, we
analyse the semidirect sums s

−→⊕ Rr with these Levi subalgebras in more detail. Throughout
this section, and unless otherwise stated, the notation s will refer either to sl(2, R) or to so(3).

We saw in section 2 that in the computation of the invariants of the algebra so(3)
−→⊕Rr

with R = ad so(3) and r the three-dimensional Abelian algebra 3L1, there was an invariant
depending only on the variables associated with 3L1. We claimed that the existence of this
invariant, coming from a special subsystem of (6), was not casual. The next proposition shows
that this property does not depend on the representation.

Theorem 2. Let R be an irreducible representation of s. Then the semidirect sum s
−→⊕Rr

admits non-trivial invariants. Moreover, if dim(r) > dim(s), there exists a fundamental
set of invariants formed by functions Fi depending only on variables associated with
elements of r.

Proof. We prove it for s = sl(2, R), the case of so(3) being similar. First, we only
need to prove the result for odd-dimensional representations Dj , since the remaining case
follows at once from the odd dimensionality of the semidirect sum. By proposition 1,
the radical r is Abelian, and the maximal weight of R is λ = 2m − 4 (m � 3). Let
{X1,X2,X3, . . . , X2m} be a basis of s

−→⊕Rr such that {X1,X2,X3} is a basis of sl(2, R)

(with [X1,X2] = 2X2, [X1,X3] = −2X3, [X2,X3] = X1) and {X4, . . . , X2m} is a basis of
the Abelian radical r. The system of PDEs giving the invariants of s

−→⊕Rr is

X̂1F = (−2x2∂x2 + 2x3∂x3 − ∑2m−4
i=0 (λ − 2i)x4+i∂x4+i

)
F = 0

X̂2F = (
2x2∂x1 − x1∂x3 − ∑2m−4

i=1 (λ − i + 1)x3+i∂x4+i

)
F = 0

X̂3F = (−2x3∂x1 + x1∂x2 − ∑2m−5
i=0 (i + 1)x5+i∂x4+i

)
F = 0

X̂4+iF = (
(λ − 2i)x4+i∂x1 − (i + 1)x5+i∂x2 + (λ − i + 1)x3+i∂x3

)
F = 0

0 � i � 2m − 4


. (10)

Observe that since r is Abelian, the equations {X̂4+iF = 0}0�i�2m−4 do not involve the
partial derivatives ∂xi

F for 4 � i � 2m. This allows us to extract the subsystem

X̂′
1F = ( ∑2m−4

i=0 (λ − 2i)x4+i∂x4+i

)
F = 0

X̂′
2F = ( ∑2m−4

i=1 (λ − i + 1)x3+i∂x4+i

)
F = 0

X̂′
3F = ( ∑2m−5

i=0 (i + 1)x5+i∂x4+i

)
F = 0

 (11)
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and any solution is obviously an invariant of s
−→⊕ Rr. The question reduces to show that the

system (11) admits a non-trivial solution for any irreducible representation DJ . Observe that
(11) can be written asλx4 (λ − 2)x5 · · · −(λ − 2)x2m−1 −λx2m

0 λx4 · · · 2x2m−2 x2m−1

x5 2x6 · · · λx2m 0




∂x4F

·
·

∂x2m
F

 = 0. (12)

Now this matrix of coefficients has at most rank three (indeed three if m � 4 and rank one
if m = 3), so that (11) has always a solution, which shows that N (s

−→⊕ Rr) �= 0. In particular,
the system (11) gives the following number of solutions:

1 if m = 3

2m − 6 if m � 4

}
. (13)

Observe that for m = 3 the representation R is the adjoint representation, and in this case
we can find another invariant which depends also on the variables x1, x2, x3. For m � 4 it is
not difficult to see that ∂xi

F = 0 for i = 1, 2, 3, which shows that the (2m − 6) functionally
independent solutions of (11) constitute a fundamental set of invariants for s

−→⊕Rr. �

Corollary 2. Let s = sl(2, R), so(3). If the radical r is Abelian then N (s
−→⊕ Rr) �= 0.

Proof. If the representation contains a copy of the trivial representation D0 or dim r is even,
we automatically have solutions of the corresponding system (3). If R does not contain a copy
of D0, we can again extract a subsystem from (3), since the radical is Abelian and its equations
do not contain the partial derivatives corresponding to elements of r. Now R is a sum of
irreducible representations, of which at least one summand R0 must have even highest weight
λ, in order to ensure the odd dimensionality of r. Moreover, the variables involved in R0 do not
appear in the other summands of r, which ensures that we can apply the preceding theorem.
This shows that there exists a nontrivial of the subsystem corresponding to R0, which, by the
complete reducibility of R and the abelianity of r, is also an invariant of s

−→⊕Rr. �

The following example illustrates the procedure used in this proof: let s = sl(2, R) and
consider the reducible representation D1 ⊕D 1

2
. Suppose that the radical r is a five-dimensional

Abelian Lie algebra. The invariants of s
−→⊕Rr are the solutions of the system(−2x2∂x2 + 2x3∂x3 − 2x4∂x4 + 2x6∂x6 − x7∂x7 + x8∂x8

)
F = 0(−2x2∂x1 + x1∂x3 + 2x4∂x5 + x5∂x6 + x7∂x8

)
F = 0(

2x3∂x1 − x1∂x2 + x5∂x4 + 2x6∂x5 + x8∂x7

)
F = 0(−2x4∂x1 − x5∂x3

)
F = 0(−2x4∂x2 − 2x6∂x3

)
F = 0(

2x6∂x1 − x5∂x2

)
F = 0(−x7∂x1 − x8∂x3

)
F = 0(

x8∂x1 − x7∂x2

)
F = 0



. (14)

We extract a subsystem from the first three equations(−2x4∂x4 + 2x6∂x6 − x7∂x7 + x8∂x8

)
F = 0(

2x4∂x5 + x5∂x6 + x7∂x8

)
F = 0(

x5∂x4 + 2x6∂x5 + x8∂x7

)
F = 0

 (15)
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Table 2. Ten-dimensional indecomposable Lie algebras with a compact subalgebra of dimension
n � 7.

Algebra Levi decomposition Representation R N

L10,14 so(3)
−→⊕R(7L1) R7 4

L10,15 so(3)
−→⊕R(7L1) R4 ⊕ ad so(3) 4

L10,27 sl(2,R)
−→⊕ R(7L1) D3 4

L10,28 sl(2,R)
−→⊕ R(7L1) D2 ⊕ D 1

2
4

L10,29 sl(2,R)
−→⊕ R(7L1) D 3

2
⊕ D1 4

L10,30 sl(2,R)
−→⊕ R(7L1) D1 ⊕ 2D 1

2
4

and any solution of this system is an invariant of the algebra. Equation (15) can also be
reduced to (−2x4∂x4 + 2x6∂x6

)
F = 0(

2x4∂x5 + x5∂x6

)
F = 0(

x5∂x4 + 2x6∂x5

)
F = 0

 (16)

which is the subsystem corresponding to the adjoint representation. Clearly, the polynomial
I1 = 4x4x6 − x2

5 is a solution of (14) and (15), and therefore an invariant of the algebra. Since
the other summand of R is D 1

2
, the other invariant will depend on all the variables x4, . . . , x8.

We find I2 = x4x
2
8 −x5x7x8 + x6x

2
7 . Thus I1, I2 form a fundamental set of invariants of s

−→⊕ Rr.
These two preceding results constitute an important restriction for a semidirect sum s

−→⊕Rr

to satisfy N (s
−→⊕Rr) = 0. Any representation in such algebra must be reducible and contain a

copy of the trivial representation D0 (see table 1 and the examples in section 3).

Proposition 3. Let s = so(3), sl(2, R). If the radical r of s
−→⊕Rr has a one-dimensional

centre, then the representation R describing the semidirect sum contains a copy of the trivial
representation D0. In particular, N (s

−→⊕Rr) �= 0.

Proof. Let z generate the centre Z(r) or r. For any X ∈ s and Y ∈ r we have

[X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0

which shows that [s, Z(r)] ⊂ Z(r). Now

[X2, [X3, Z]] + [Z, [X2,X3]] + [X3, [Z,X2]] = 0

which shows that [X1, Z] = 0. Similarly it is proven that [X2, Z] = [X3, Z] = 0, from which
we deduce the existence of a copy of the trivial representation in the decomposition of R. Since
the action of s over Z(r) is zero, we will obtain the monomial invariant I1 = z. �

The results obtained so far for the Levi factors so(3) and sl(2, R) have important physical
applications, such as the classification of multidimensional spacetimes [21]. In this frame,
all ten-dimensional real Lie algebras having a (7 + d)-dimensional compact subalgebra have
been determined. Of special interest are those which have non-trivial Levi decomposition,
and which are the only candidates that could present the anomaly N (s

−→⊕Rr) = 0. From the
30 classes found [26], only 6 are indecomposable, i.e., they do not decompose as a direct sum
of lower-dimensional Lie algebras. They have been listed in table 2, where the notation for
the algebras is the same as in [26].

By theorem 2 and corollary 2 we see that, since the radical is always Abelian, we will
obtain non-trivial invariants. For these algebras, in contrast to the possible multidimensional
cosmological models seen in section 3 and table 1, the existence of a compact subalgebra of
dimension n � 7 implies that the algebra has non-vanishing invariants.
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5. Application to radicals with a codimension one Abelian ideal

In this section, we analyse a special kind of radicals. We will suppose that r is a solvable
non-nilpotent Lie algebra such that [r, r] is a codimension one Abelian ideal. We will see that
such radicals always imply the existence of invariants, up to the lower-dimensional cases. In
particular, the radicals found in table 1 for the eight-dimensional algebras s

−→⊕Rr will constitute
the exception for radicals of this type.

Theorem 3. Suppose that R = R′ ⊕ 2D0, where R′ is a representation of s. Then
N (s

−→⊕Rr) > 0.

Proof. Since R contains at least two copies of the trivial representation, there exists an element
Y ∈ [r, r] such that [s, Y ] = 0. Let T /∈ [r, r] and [T , Y ] = ∑

Yi∈[r,r] aiYi(ai ∈ R). The
equation Ŷ F = 0 of system (3) has the form

Ŷ F = −
 ∑

Yi∈[r,r]

aiyi

 ∂T F = 0. (17)

Now, if [T , Y ] = 0, the function F = y is an invariant of s
−→⊕Rr. If the bracket [T , Y ] is

nonzero, then (17) implies that ∂T F = 0 for any invariant F. The complete reducibility of the
representation R (the ideal [r, r] has codimension one in r and is an s-module) implies that
[s, T ] = 0. The number N (s

−→⊕ Rr) is given by the difference of the dimension of s
−→⊕ Rr and

the rank of the matrix A(s
−→⊕Rr), which in this case has the form

0 [X1,X2] [X1,X3] [X1, Z1] · · · [X1, Zr ] 0 0

[X2,X1] 0 [X2,X3] [X2, Z1] · · · [X2, Zr ] 0 0

[X3,X1] [X3,X2] 0 [X3, Z1] · · · [X3, Zr ] 0 0

[Z1,X1] [Z1,X2] [Z1,X3] 0 · · · 0 0 [T ,Z1]

...
...

...
...

...
...

...

[Zr,X1] [Zr,X2] [Zr,X3] 0 · · · 0 0 [T ,Zr ]

0 0 0 0 · · · 0 0 [T , Y ]

0 0 0 [Z1, T ] · · · [Zr, T ] [Y, T ] 0


(18)

where {Z1, . . . , Zr, Y, T } is a basis of r. Elementary methods show that the determinant of
this matrix is the product of −[T , Y ]2 and the following determinant

det



0 [X1,X2] [X1,X3] [X1, Z1] · · · [X1, Zr ]

[X2,X1] 0 [X2,X3] [X2, Z1] · · · [X2, Zr ]

[X3,X1] [X3,X2] 0 [X3, Z1] · · · [X3, Zr ]

[Z1,X1] [Z1,X2] [Z1,X3] 0 · · · 0

...
...

...
...

...

[Zr,X1] [Zr,X2] [Zr,X3] 0 · · · 0


(19)

which must be zero, since the rank of the matrix in (19) gives the number of invariants of the
subalgebra s

−→⊕R−2D0(rL1), which is non-maximal in virtue of theorem 1. Therefore, the rank
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of A(s
−→⊕Rr) is less than its dimension, from which the existence of non-trivial invariants is

ensured. �

It should be remarked that if R contains only one copy of D0 or the codimension of [r, r]
is r which is greater than one, then the conclusion is false, as can easily be extracted from
table 1. We will finally see that radicals as considered in this section are only valid in low
dimensions in order to obtain Lie algebras s

−→⊕Rr such that N (s
−→⊕Rr) = 0.

Proposition 4. If dim(r) � 7 then N (s
−→⊕Rr) �= 0.

Proof. As before, since [r, r] is a codimension one s-submodule of r, the action of s on
a generator T ∈ r − [r, r] is zero. If dim(r) = 7, then dim(s

−→⊕Rr) = 10 and the matrix
A(s

−→⊕Rr) has the form

0 [X1,X2] [X1,X3] [X1, Z1] · · · [X1, Z6] 0
[X2,X1] 0 [X2,X3] [X2, Z1] · · · [X2, Z6] 0
[X3,X1] [X3,X2] 0 [X3, Z1] · · · [X3, Z6] 0
[Z1,X1] [Z1,X2] [Z1,X3] 0 · · · 0 [T ,Z1]

...
...

...
...

...
...

[Z6,X1] [Z6,X2] [Z6,X3] 0 · · · 0 [T ,Z6]
0 0 0 [Z1, T ] · · · [Z6, T ] 0


. (20)

It is easy to verify that the determinant of (20) does not depend on the brackets, and that it
is zero. Since for any radical r of the considered type such that dim(r) � 7 the determinant of
A(s

−→⊕Rr) is a linear combination of matrices of type (20) and matrices as in (19), it follows
that det A(s

−→⊕Rr) = 0. �

Observe that this result explains, in terms of the representation theory of so(3), why the
ten-dimensional Galilei algebra has two (Casimir) invariants depending only on the translations
Pi and the pure Galilean transformations Ki .

6. Conclusions

We have seen that for any dimension n � 6, there exist non-semisimple Lie algebras s
−→⊕Rr

with non-trivial Levi factor s such that N (s
−→⊕Rr) = 0. This constitutes a proof that the Levi

decomposition theorem [22] does not reduce the number of generalized Casimir invariants of
s
−→⊕Rr to some combination of the numbers corresponding to the Levi factor s and the radical

r, but depends essentially on the pair (R, r) formed by the representation R describing the
semidirect sum and the radical.

For the rank one simple Lie algebras so(3) and sl(2, R), the number of invariants of
a semidirect sum s

−→⊕Rr have been analysed in some detail. In particular, the analysis
undertaken has given a representation-theoretic interpretation of the invariants obtained for
the (3 + 1) kinematical algebras such as the Galilei algebra. The interest of these Levi factors
is therefore justified not only by kinematical problems, but also by the extensions of Bianchi
type-IX cosmology [20, 21]. Specially interesting are those admissible extensions which have
no invariants. Therefore, invariant quantities for these algebras should be searched using
distribution theory [19]. In particular, if the radical is Abelian, we have proved that we will
obtain solutions, some of them depending only on variables associated with elements of the
radical. This confirms that the fact that the special affine algebras sa(n, R) have invariants (for
being odd dimensional) is not an isolated case, but also the general pattern for those semidirect
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sums which are even dimensional. From the computed examples, it seems reasonable to expect
that, whenever the radical r is a nilpotent Lie algebra, the number of invariants of a semidirect
sum s

−→⊕Rr will be nonzero. However, for this case, it is not sufficient to know which is the
representation R that describes the semidirect sum. We need more precise information on the
structure of r (not merely the value of very general invariants such as the nilpotence index),
which impedes to establish a general result as for the Abelian case.

The most important question that arises from our results is whether they can be extended
to any semisimple Lie algebra of rank r � 2. At least for direct sums of sl(2, R) and so(3),
this seems to hold. An example which is worth analysing is the Schrödinger algebra S in
(3 + 1) dimensions [28]. Over the basis {Ji,Ki, Pi , P0, C,D}i=1,2,3, this algebra is given by
the brackets

[Ji, Jj ] = εijkJk [Ji,Kj ] = εijkKk [Ji, Pj ] = εijkPk [Ki, P0] = Pi

[Pi,D] = Pi [D,Kj ] = Kj [D,P0] = −2P0 [C,Pj ] = Kj

[C,P0] = −D [C,D] = −2C

where P0 is the time translation, Pi the space translations, Ji the rotations and Ki the
pure Galilean transformations. It can easily be verified that the subalgebra a generated by
{Ki, Pi}i=1,2,3 is six-dimensional and Abelian, while {P0, C,D} generates a copy of sl(2, R).
Therefore, we obtain the semisimple algebra so(3) ⊕ sl(2, R), and since a is an ideal, we
have the Levi decomposition of S (by abuse of notation, we can denote the corresponding
representation by D 1

2
⊗ ad so(3)). If we extract a subsystem of the corresponding system

(2), as done in the proof of theorem 2, we obtain that S has a fourth-order Casimir operator
P4 depending only on the space translations and pure Galilei transformations

P4 = K2
1

(
P 2

2 + P 2
3

)
+ K2

2

(
P 2

1 + P 2
3

)
+ K2

3

(
P 2

1 + P 2
2

)
− 2(P1P2K1K2 + P1P3K1K3 + P2P3K2K3).

For other simple Lie algebras, a direct calculation of the rank of matrices A(s
−→⊕Rr)

becomes a enormously difficult problem, and therefore the proofs of the generalization of the
results obtained for rank one simple algebras, if they hold, must be approached by completely
different means.

Finally, these results are of interest for the study of non-semisimple (maximal) regular
subalgebras of simple Lie algebras. The example sl(2, R)

−→⊕ D 1
2
⊕D0 3L1 of table 1 is a regular

subalgebra of sl(3, R) and has no invariants. It would be important to obtain a detailed
description of the non-semisimple maximal regular subalgebras of simple Lie algebras which
do not have non-trivial invariants. This problem is of interest not only for symmetry breaking
questions [29], but also for solving many fundamental problems which arise in rigidity and
contraction theory [5, 30], such as the invariant theory of parabolic subalgebras of semisimple
Lie algebras, the construction of contraction trees or the expansion problem [31].
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[7] Cariñena J F, del Olmo M and Santander M 1981 J. Phys. A: Math. Gen. 14 1
[8] Campoamor-Stursberg R 2002 Hadronic J. at press
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